Copyright © 2020 Engineering Pro Guides, LLC. Licensed for individual use only.

EXAM DAY CHECKLIST

Are you ready? ...almost there

1. Check out the loca	tion beforehand.	Where to park	what room?
T. CHECK OUT THE IOCA	tion beforemand.	wilele to pair	, what i doili:

2. Arriv	ve early!
3. Thin	gs to bring (Computer Based Test):
	Identification
	Exam Authorization Form (NCEES)
	(2) calculators
	Jacket without Hood
	Glasses (without case) – if needed
	Pack a lunch – store in locker
	Comfort Items (visually inspected): Cough Drops, Eye Drops, headache medicine (no container
4. Test	Center Provided Items:
	Test Center provided Tissue & Earplugs (confirm)
	Test Center Locker Key
	Test Center Booklet/Marker
5. Not a	allowed in exam room: most test centers will have lockers to store your personal items.
Χ	Cell phones
Χ	Wallets/Purses
Χ	Bags
Χ	Food/Drinks
Χ	Tobacco
Χ	Pens/Pencils/Paper/Erasers

X Hats/Hooded Jackets

X Slide charts/wheels (i.e. ductulator, pipe wheel, motor chart)

X Pencils/Erasers

X Straight edges

X Watches

Copyright © 2020 Engineering Pro Guides, LLC. Licensed for individual use only.

COMMON MISTAKES

Double check before you submit your exam!

Answer all questions before submitting			
Check your units! Inches vs Feet Minutes vs Hour: GPM, CFM, ACH, Ib/min, Ib/hr, Btu/h Month vs Year: Economics questions Ibm vs Ibf vs slugs			
Correct decimal place?			
Diameter vs Radius Insulation Thickness + Radius Calculating Area/Flow rate/Velocity 			
Absolute vs Relative PSIA vs PSIG – NPSH in PSIA Fahrenheit vs Rankine – Reynolds # in Rankine			
Refrigeration Charts Did you use the correct refrigerant? Lookup with Temperature or Pressure column hf vs hfg			
Psychrometric Chart Correct Density (other than STP, 60F & 14.7 psia) Correct Elevation			
Heat Transfer K value (conductivity, use thickness) vs R value (thickness included) K value per inch or per ft Windows – Conductive + Radiative Heat			
Does your answer make logical sense?			

Review the Basics!

I. Principles (28-43)

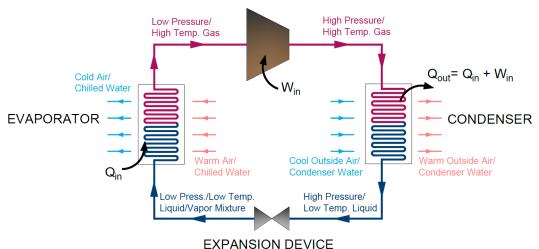
A. Basic Engineering Practice (4-6)

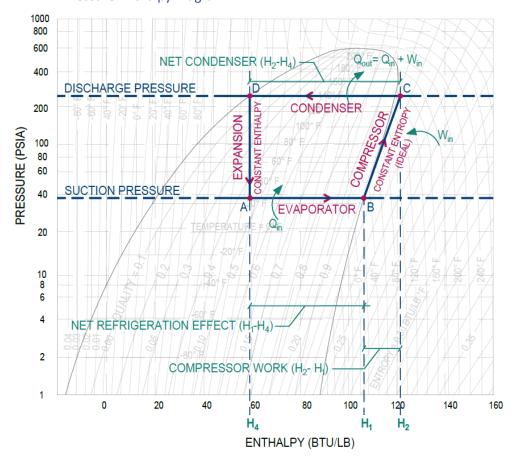
- 1. Units and conversions
 - Gravitational Constant: $g_c = 32.2 \frac{ft \cdot lbm}{lbf \cdot s^2}$
 - Convert between lbm and lbf
 - Common conversions
 - 12,000 Btuh = 1 cooling ton
 - 15,000 Btuh = 1 nominal cooling tower ton
 - 3.412 Btuh = 1 Watt
 - 1 gallon = 8.34 pound water
 - 1 HP = 0.7457 kW
 - 1 psi = 2.31 ft head
 - Common Constants
 - Air density @STP = 0.075 lb/ft^3
 - STP of Air: 60F, 14.7 psia
 - Specific Heat Capacity

$$\begin{array}{l} \circ \quad c_{p,water} = 1.0 \frac{Btu}{lbm*R} \\ \circ \quad c_{p,air} = 0.240 \frac{Btu}{lbm*R} \text{ @constant pressure} \\ \circ \quad c_{v,air} = 0.171 \frac{Btu}{lbm*R} \text{ @constant volume (less used)} \end{array}$$

2. Economic analysis

- Interest Rate Table
- Simple Payback
- Straight Line Depreciation
- MACRS
- 3. Electrical concepts (e.g., power consumption, motor ratings, heat output, amperage)
 - Power Consumption:
 - Demand (kW) * hours = Energy (kWh)
 - Building Energy Indices:
 - Energy Utilization Index (EUI) = Total Yearly Energy/Building Area
 - Cost Utilization Index (CUI) = Total Yearly Energy Cost/Building Area
 - Motor Ratings
 - Power (comes in set increments): 0.5 HP, 0.75 HP, 1 HP, 2 HP, 3 HP, 5 HP, 7.5 HP, 10 HP, 15, HP 20 HP, 25 HP, 30 HP, 40 HP, 50 HP, 60 HP, 75 HP, 100 HP
 - Amperage
 - FLA = Full Load Current (Operating Amps, use in apparent power calc)
 - RLA = Running Load Amps (Similar to FLA)
 - LRA = Locked Rotor Amps (startup current, disconnect sizing)

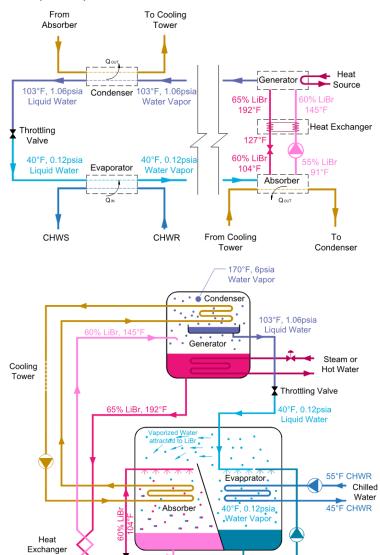



- Frequency: 60 Hz (USA), frequency of AC power
- **RPM**: How fast the motor spins
- **Service Factor**: How much more the motor can temporarily operate beyond its rating. Example, service factor of 1.15 can operate 15% beyond its rated HP for a short period of time.
- Power Factor: to Find Real Power or to find Current
 - Apparent Power, 1 phase (S) = Current (I)*Voltage (V)
 - Apparent Power, 3 phase (S) = $\sqrt{3}$ *Current (I)*Voltage (V)
 - Real Power (P, KW) = Power Factor (PF) * Apparent Power (S)
- NEMA: efficiency rating and enclosure rating
- Efficiencies
 - Electrical HP = $\frac{Brake\ HP}{\eta_{motor}\%} = \frac{Mechanical\ HP}{\eta_{motor}\%*\eta_{mech}\%}$
 - $O Mechanical HP (Fan) = \frac{CFM*TP(in wg)}{6356}$
 - Mechanical HP (Pump) = $\frac{GPM*TDH(ft)}{3956}$
 - $\eta\%$ releases heat. Determine heat to airstream or to space

B. Thermodynamics (4-6)

- 1. Cycles
 - Vapor Compression Cycle (Refrigeration)
 - Terms: Net Refrigeration Effect, Superheat, Subcool
 - Vapor Compression Cycle

COMPRESSOR



- Overall Efficiency
 - $OP = \frac{Evaporator\ Energy\ (Btuh)}{Compressor\ Work\ (Btuh)}, \text{ typically COP} > 2.5$
 - \circ EER = 3.412 * COP
 - \circ kW/ton = 12/EER
- Part Load Chiller Efficiency
 - o IPLV, efficiency given at various % load at standard AHRI conditions
 - o NPLV, efficiency given at various % load at non-standard
- Compressor Efficiency
- Absorption Cycle (Refrigeration)
 - Two Shells, Refrigerant + Absorber, Heat Source
 - o Refrigerant: Water
 - o Absorber: Lithium-Bromide or Ammonia
 - o Heat Source: Hot Water/Steam, typically used with waste heat
 - $COP = \frac{Evaporator\ Energy\ (Btuh)}{Heat\ In\ (Btuh)}$, typically 1.5

Absorption Cycle

2. Properties

- Terms
 - Isentropic *Constant Entropy*
 - o e.g. Ideal Compressor
 - Adiabatic heat does not enter/leave the system
 - \circ In psych chart \rightarrow Constant Enthalpy
 - e.g. Dehumidifiers, Evaporative coolers (mostly), Expansion Valve, Throttling Valve

Excess Water

- Isothermal *Constant Temperature*
- Isobaric Constant Pressure
- Energy
 - $Q = \dot{m}\Delta h$, use for steam, refrigerant, and total heat equation

$$\circ$$
 Total Heat (air): $q = 4.5*CFM*\Delta h \left(\frac{Btu}{lb}\right)$

- $lack q=\dot m c_p \Delta T$, no pressure change, use for sensible heat and water
 - \circ Water: $q = 500 * GPM * \Delta T$ [uses $c_{p,water} = 1.0 \frac{Btu}{lbm*R}$]
 - ° If water temp starts to rise above 100F, use water property tables in NCEES Mech PE Reference Handbook, Ch. 1 to find new density.

$$^{\circ} \quad q_{generic} = c_{p} \left(1.0 \frac{^{Btu}}{lbm} \right) * \rho \left(\frac{lbm}{ft^{3}} \right) * \frac{_{1}ft^{3}}{^{7.48}gal} * \frac{_{60min}}{hr} * GPM * \Delta T$$

° Example: at 200F,
$$\rho = 60.12 \frac{lbm}{ft^3} \Rightarrow q_{200F} = 482 * GPM * \Delta T$$

$$\circ$$
 Sensible Heat (air): $q=1.1*CFM*\Delta T$ [uses $c_{p,air}=0.24\frac{Btu}{lbm*R}$]

• $q = \dot{m}h_{fg}$, phase change, use for latent heat

o Latent Heat:
$$q = 4.840 * CFM * \Delta W \left(\frac{lb_{wet}}{lb_{dry}}\right)$$
 [uses $h@75F - 50F$]

- Partial Pressure
 - Total Pressure = ∑Pressure of each gas
 - Total Pressure Air = Water Vapor Pressure + Dry Air Pressure
 - Vapor Pressure = Relative Humidity % * Saturated Vapor Pressure
- Energy:
 - Convert between lbm and lbf

3. Compression processes

- Air/Gas
 - Ideal Gas Law, PV=nRT
 - Actual CFM to Standard CFM

C. Psychrometrics (e.g., sea level, 5,000-ft elevation) (7-11)

- Wet Bulb, Dry Bulb, Density, Relative Humidity, Humidity Ratio, Enthalpy, Dew Point, Altitude/Pressure
- 1. Heating/cooling processes
 - Total Heat = Sensible Heat + Latent Heat
 - At standard temperature/pressure, 0.075 lb/cuft
 - Total Heat: $q = 4.5 * CFM * \Delta h \left(\frac{Btu}{lh}\right)$
 - Sensible Heat: $q = 1.1 * CFM * \Delta T (F)$
 - Latent Heat: $q = 4.840 * CFM * \Delta W \left(\frac{lb_{wet}}{lb_{dry}}\right)$
 - At 5,000 ft elevation
 - Total Heat @ 5000 ft: $q = 3.74 * CFM * \Delta h \left(\frac{Btu}{lh}\right)$
 - Sensible Heat @ 5000 ft: $q = 0.92 * CFM * \Delta T (F)$
 - Latent Heat @ 5000 ft: $q = 4027 * CFM * \Delta W \left(\frac{lb_{wet}}{lb_{dry}} \right)$


- "Temperature and Altitude Corrections" table in NCEES Handbook Ch. 7
- If air density changes drastically away from standard 0.075 lb/ft³ due to temp/altitude use correction table to find density factor.
 - \circ $q_{total.non-standard} = DF * 4.5 * CFM * \Delta h$
 - $\circ q_{sensible,non-standard} = DF * 1.1 * CFM * \Delta T$
 - $\circ \quad q_{latent,non-standard} = DF * 4840 * CFM * \Delta T *$

*In latent eqn, use DF for altitude changes only. Use long latent equation for air temp change, since h_{fg} might also change.

o Example: at 200F,
$$\rho = 0.0602 \frac{lbm}{ft^3}$$
, $DF = 0.803 \Rightarrow$

$$q_{total,200F} = 0.803 * 4.5 * CFM * \Delta h = 3.6 * CFM * \Delta h$$

- Sensible Heat Ratio (SHR) = Sensible Heat/Total Heat
 - If given as room load SHR, based on load in space
 - Figure below SHR in red, Cooling coil load in blue

- ullet Heat of Vaporization = $h_g h_f$, energy to vaporize liquid to gas
- Lever Rule: $X_{mix} = X_1 * \%_{CFM,1} + X_2 * \%_{CFM,2}$
 - X can be DB temp, Humidity Ratio, or Enthalpy, <u>NOT</u> WB Temp

2. Humidification/dehumidification processes

- Chemical Dehumidification, adiabatic
- Evaporative Cooling, essentially adiabatic
- Steam humidification, follow enthalpy/humidity ratio angle or add lb/hr.
- · Cooling Dehumidification, below dew point
- Airflow to moisture flow, $\dot{m}\left(\frac{lb}{hr}\right) = \dot{V}\left(\frac{ft^3}{min}\right) * \left(\frac{60min}{1 hr}\right) \rho\left(\frac{lb_{dry}}{ft^3}\right) * \Delta W\left(\frac{lb_{wet}}{lb_{dry}}\right)$

3. Altitude Correction

- $P = 14.7 * (1 6.8754 * 10^{-6} * Z)^{5.2559}$
- T = 59 0.003566 * Z
 - Where Z is altitude in ft

Copyright © 2020 Engineering Pro Guides, LLC. Licensed for individual use only.

D. Heat Transfer (6-9)

- 1. Terms/Basics
 - k, Conductive heat transfer coefficient, per thickness
 - Be aware of whether units are in per inch $\left[\frac{Btu \cdot in}{hr \cdot ft^2 \cdot F}\right]$ or per ft $\left[\frac{Btu}{hr \cdot ft \cdot F}\right]$
 - R, resistance, includes thickness $\left[\frac{hr \cdot ft^2 \cdot F}{Btu \cdot in}\right]$
 - U, overall heat transfer coefficient = $1/R \left[\frac{Btu}{hr \cdot ft^2 \cdot F} \right]$
 - Conduction

$$q = UA\Delta T$$

$$\circ U = \frac{1}{R_{total}}$$

$$\circ R_{series} = R_1 + R_2 \dots + R_n$$

$$\circ \frac{1}{R_{parallel}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$$

- U, k, or R values in NCEES Handbook
- R value for air space also in NCEES Handbook
- Convection
 - $q = h_{conv} * A * \Delta T$
 - h, convection heat transfer coefficient based on flow over surface
 - NCEES Handbook for h value of vertical, horizontal surfaces with/without wind.
- Radiation
 - To surroundings: $q = \varepsilon \sigma A (T_{object}^4 T_{surrounding}^4)$
 - Black body, most efficient at emitting radiation and absorbing incident energy.
 - \circ $\varepsilon = \alpha = 1$, where ε is emissivity and α is absorptivity
 - For any type of body, $\alpha + \rho + \tau = 1$, energy is either absorbed (α) , reflected (ρ) , or transmitted (τ) .

2. Building Envelope Loads

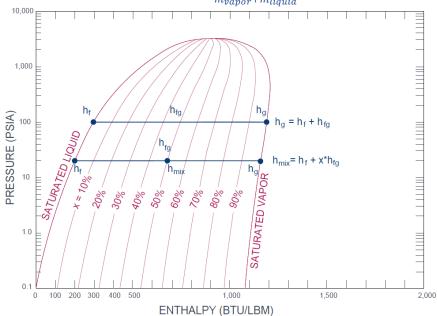
- R values of various materials in NCEES Mechanical PE Reference Handbook
- Walls/Roof:
 - U values
 - Include surface film coefficient, h: See "Surface Film Coefficient/Resistances for Air" table in NCEES Handbook, Ch. 9.

- Space heat gain: thermal mass
 - Use CLTD instead of $\Delta T [Q = U * \Sigma (A * CLTD)_{directn}]$
- Windows (Fenestration): Radiative + Conductive Heat Gain
 - Radiative Heat $\Sigma[A * SHGC * E_t * IAC]_{direction}$
 - Radiative Heat, older version $[SC * \Sigma(A * SCL)_{direction}]$
 - Conductive Heat $[UA\Delta T]$

3. Configurations

Flat vs Cylinder Equations

$$Q_{cond+conv} = \frac{2\pi L*(T_{fluid} - T_{ambient})}{\frac{\ln(\frac{r_2}{r_{inner}})}{k_i} + \frac{\ln(\frac{r_3}{r_2})}{k_{ii}} + \dots + \frac{\ln(\frac{r_{outer}}{r_n})}{k_m} + \frac{1}{r_{inner}h_{inner}} + \frac{1}{r_{outer}h_{outer}}}$$


- Solve for Surface Temperature
 - Convection (Tsurf Tin) = Conduction (Tamb Tsurf)

E. Fluid Mechanics (3-5)

- Find pressure drop $\frac{P_1}{\rho g} + z_1 + \frac{v_1^2}{2g} = \frac{P_2}{\rho g} + z_2 + \frac{v_2^2}{2g} + h_f + h_{f,fitting}$
 - Size pump pressure
 - o Closed system, all is equal except hf,
 - Open system, hf + change in elevation, z.
- $h_f = major \ head \ loss$
 - $\qquad \qquad \text{Darcy Weisbach } h_f = f \frac{{\scriptscriptstyle L}}{{\scriptscriptstyle D}} \frac{v^2}{2g}$
 - Find f on Moody diagram with Reynolds Number, $Re = \frac{vD}{v}$ and $\frac{\varepsilon}{D}$
 - Either include equivalent length for fittings and other losses or find fitting losses from the equation below
 - Equivalent lengths from tables.
- $h_{f,fitting} = k \frac{v^2}{2g'}$, where k is a loss factor
- Simplified GPM/Diameter \rightarrow velocity conversion: $v_{water}\left(\frac{ft}{s}\right) = \frac{0.409*GPM}{[D(in)]^2}$

F. Energy/Mass Balance (4-6)

- Steam quality $x = \frac{h h_f}{h_g h_f}$
- Steam quality by mass $x = \frac{m_{vapor}}{m_{vapor} + m_{liquid}}$

II. Applications (42-64)

A. Heating/Cooling Loads (7-11)

- Contact Factor = $\frac{T_{entering} T_{leaving}}{T_{enterng} T_{apparatus\ dew\ point}}$, how much of the air hits and is cooled by the coil.
- $Bypass\ Factor = 1 Contact\ Factor$, how much air goes around the coil.
- Apparatus Dew Point = Coil Temperature
- Cooling load:
 - Lights, people, miscellaneous equipment; (adjust with usage factors)
 - Envelope
 - Walls/Roof use CLTD
 - Windows use conductive + solar
- **Heating loads** do not take credit from the heat gain in the space or solar loads.

 $Q_{heating\ load,total}$

$$= Q_{wall,conduction} + Q_{roof,conduction} + Q_{window,conduction} + Q_{skylight,conduction} + Q_{infiltration} + Q_{ventilation}$$

- Wall/Roof: No time lag-CLTD; Q_{heating}=UA∆T
- Window: Conduction only; Q_{heating}=UA∆T
- Ventilation/Infiltration
- No miscellaneous, people, lights

B. Equipment and Components (16-24)

- 1. Cooling towers and fluid coolers
 - Approach = CDW Out Air in Wet bulb
 - Range
 - Cooling Tower: Range = CDW in Temp CDW Out Temp
 - Fluid Cooler
 - Dry type: air flows over coil to cool the fluid
 - Evaporative type: Cooling tower with heat exchanger to separate the fluid that is cooled from the evaporated fluid
 - Evaporative Cooler: Range = Return Air Temp Supply Air Temp
 - Types: Counterflow, Crossflow, Induced Draft, Forced Draft
 - Makeup Water: make up loss from Drift, Evaporation, Blow Down
 - Components: Fill, Louvers, Drift Eliminators, Nozzles
 - Effectiveness = 100% * Range/(Range+Approach)
 - $q_{CDW} = q_{AIR}$

•
$$500 * GPM * \Delta T_{CDW} = CFM * \rho \left(\frac{lb_{dry}}{ft^3}\right) * \frac{60min}{hr} * \Delta T_{air}$$

- 2. Boilers and furnaces (e.g., efficiencies, fuel types, combustion)
 - Higher Heating Value, gross heat in the fuel, (Btu/lb or Btu/ft^3)
 - Lower Heating Value, heat in fuel without latent heat.
 - Energy Out $\left(\frac{Btu}{hr}\right) = Energy \ In * \eta\% = \left[HHV\left(\frac{Btu}{lb}\right) * Fuel \ Flow \ \left(\frac{lb}{hr}\right)\right] * \eta\%$

- LMTD, parallel vs counterflow
- Effectiveness: Actual Heat Transfer/Maximum Heat Transfer
- Fouling factor
- Approach
- Heat transfer rate: $q = UAF\Delta T_{lmtd}$
 - F = correction factor, for counter flow F=1.

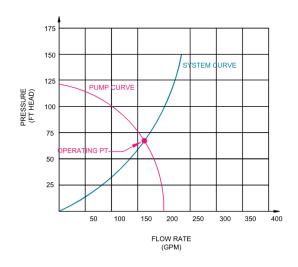
4. Condensers/evaporators (e.g., chillers, variable refrigerant flow, heat pumps)

- Chiller Type: Scroll, Screw, Centrifugal, Reciprocal, Rotary
- Air cooled vs Water cooled Chiller
- Variable Refrigerant Flow: Inverter
- Heat Pump: Reversing Valve
- Fouling factor

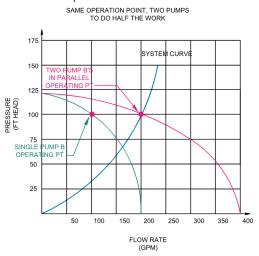
5. Pumps/compressors/fans (e.g., laws, efficiency, selection)

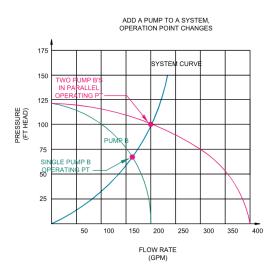
- Types
 - o Pump: End Suction, Split Case, Inline
 - Fan: Centrifugal (Forward Inclined, Backward Inclined, Backward Inclined Airfoil), Propeller, Axial
 - ° Total Pressure = Static Pressure + Velocity Pressure
 - ° Velocity Pressure [in wg] = (FPM/4005)^2
 - Different Types and Curves in ASHRAE
- Pump/Fan Laws
 - Speed = Flow (impeller/wheel diameter constant)

$$\circ \quad \frac{RPM_1}{RPM_2} = \frac{GPM_1}{GPM_2} \quad or \quad \frac{RPM_1}{RPM_2} = \frac{CFM_1}{CFM_2}$$

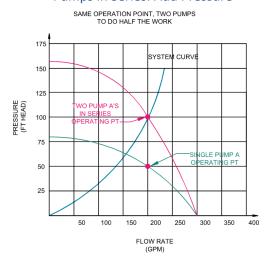

Pressure = (Flow)^2 (speed constant)

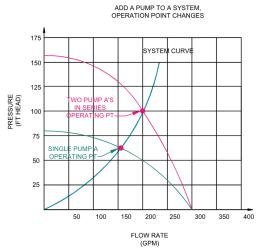
$$\circ \quad \frac{psi_1}{psi_2} = \frac{GPM_1^2}{GPM_2^2} \quad or \quad \frac{in wg_1}{in wg_2} = \frac{CFM_1^2}{CFM_2^2}$$

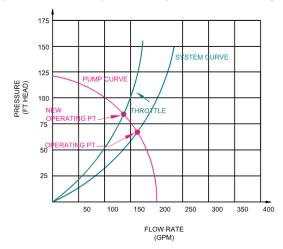

Power = (Speed)^3 = (Flow)^3 (impeller/wheel diameter constant)


$$\circ \quad \frac{HP_1}{HP_2} = \frac{RPM_1^3}{RPM_2^3} = \frac{GPM_1^3}{GPM_2^3}$$

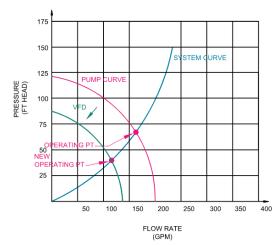
- Pump/System Curve
 - o **System**: Need one operation point (Pressure & Flow), then plot the parabolic curve with the relationship, $\frac{Pressure_1}{Pressure_2} = \frac{Flow_1^2}{Flow_2^2}$
 - o **Pump Curve**: Based on pump type, given by manufacturer
 - o Operation Point: Intersection of System & Pump Curve




Pumps in Parallel: Add Flow



• Pumps in Series: Add Pressure



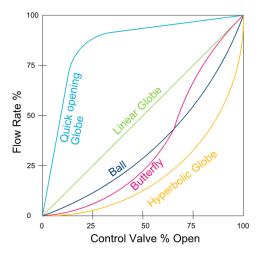
 VFD: reduce flow by reducing frequency, which reduces RPM and the power of the motor. RPM changes so pump curve changes, parallel to the old curve.

- Power
 - $\circ Mechanical HP (Fan) = \frac{CFM*TP(in wg)}{6356}$
 - Mechanical HP (Pump) = $\frac{GPM*TDH(ft)}{3956}$
- Pressure
 - Total Pressure = Static Pressure + Velocity Pressure
 - Velocity Pressure Fan (in wg) = (FPM/4005)^2
 - Velocity Pressure Pump (ft hd) = V^2/(2g)
- Efficiencies
 - o Brake $HP = \frac{Mechanical\ HP}{n}$
 - $0 Electrical HP = \frac{\eta_{mech}\%}{\eta_{motor}\%} = \frac{Mechanical HP}{\eta_{motor}\% * \eta_{mech}\%}$
- Net Positive Suction Head

o NPSHR (required): From Pump Manufacturer

Compressor: Hermetic – Fully Sealed, Semi Hermitic

6. Cooling/heating coils


- Contact $Factor = \frac{T_{entering} T_{leaving}}{T_{enterng} T_{apparatus\ dew\ point}}$, how much of the air hits and is cooled by the coil.
- $Bypass\ Factor = 1 Contact\ Factor$, how much air goes around the coil.
- Apparatus Dew Point = Coil Temperature

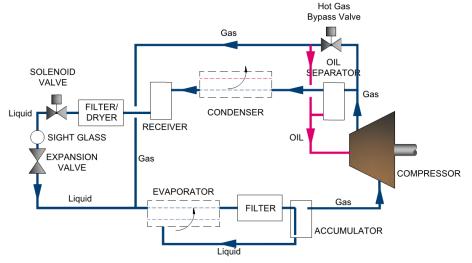
7. Control systems components (e.g., valves, dampers)

- Actuators to control opening/closing
- Valves
 - 2-way/3-way valves
 - Cv, valve coefficient

$$\circ GPM = C_{v} \sqrt{\frac{\Delta P}{SG}}$$

- Quick closing valve vs Multi turn
- Valve authority

- Damper
 - Damper: Parallel/Opposed Blade, pressure drop calculations, Fire Damper,
 Fire-Smoke Damper
 - VAV box type: Single Intake, Dual Intake, Parallel Fan Powered, Series Fan Powered
 - Damper authority
- Normally Open vs Normally Closed
- Sensors: Sensitivity, Repeatability
- Transmitters: transmits signal from sensor to the control panel



8. Refrigerants (e.g., properties, types)

- Global Warming Potential (GWP)
- Ozone Depletion Potential (ODP)
- Flammability/Safety Properties see table in NCEES handbook, Ch. 8
- Pressure-Enthalpy Diagrams: for refrig. cycles/calculations
- Performance: COP, pressures, compression ratios. See comparison table in NCEES handbook, Ch. 8
- Common types:
 - R-22: old type, no longer used for poor GWP and ODP
 - R-410A/R-134A: low ODP, high GWP, A1 safety, will eventually be phased out due to GWP.
 - R-32/R-1234yf/R-1234ze: low GWP and ODP, A2L safety, being phased in.

9. Refrigeration components (e.g., expansion valves, accumulators)

- Components of refrigerant cycle
- Accumulator, Filter/Dryer, Receiver, Sight glass, oil separator, expansion valve, condenser, compressor, evaporator, hot gas bypass (optional)

C. Systems and Components (16-24)

- 1. Air distribution (e.g., air handlers, duct design, system type, terminal devices)
 - Duct friction loss: equivalent length
 - Equivalent Diameter
 - Equal friction vs Static Regain
 - Air Devices
 - select based on noise, throw, velocity
 - Air Diffusion Performance Index (ADPI): relates temperature, speed, and thermal comfort. Higher ADPI is better
 - Air Diffusion Performance Index Table (T50/L)
 - System: Variable, Constant, Zoning

- 2. Fluid distribution/piping (e.g., hydronic, oil, fuel gas, compressed air, steam, system type)
 - Friction loss: factors, equivalent length
 - Fuel gas piping by pressure drop: use HHV to find distance to maintain maximum pressure drops. Include entire length of piping from start to each branch for sizing.
 - Compressed air piping by pressure drop: Ensure the last outlet has sufficient pressure.
 - Steam and Compressed Air produce Condensation.
 - Expansion loops: elbow, Z, U loop. Calculate using thermal expansion coefficient.
 - Expansion Tank Calculation: Open, Diaphragm, Bladder
- 3. Refrigeration (e.g., food storage, cooling and freezing)
 - Food Storage
 - Specific Heat above/below freezing

$$\circ \quad Q(Btu) = m(lb) * c_p \left(\frac{Btu}{lb * F}\right) * \Delta T$$

Latent Heat of Fusion

$$\circ \quad Q(Btu) = m(lb) * \Delta h \left(\frac{Btu}{lb}\right)$$

- Locate different food properties in your reference.
- 4. Energy recovery (e.g., enthalpy wheels, heat pipes, run-around systems, condenser heat recovery)
 - Effectiveness = Actual Energy Transfer/Max Possible Energy Transfer
 - Actual Energy Transfer = Flow Rate₁*∆ Conditions₁ = Flow Rate₂*∆
 Conditions₂
 - Max Possible Energy Transfer = Smallest Flow Rate between stream 1&2 *
 Difference between incoming conditions of stream 1&2
 - Where "conditions" are temperature-sensible energy recovery, humidity ratio-latent recovery, enthalpy-total energy recovery type)
- 5. Basic control concepts (e.g., economizer, temperature reset)
 - Direct Digital Control
 - Input/Output.
 - Inputs and outputs are relative to the control panel. i.e. sensor is an input, adjusting valve position is an output
 - Digital/Analog
 - Digital means a binary input or output. Like, open/close or off/on
 - o Analog means an input or output that is variable, like position.
 - Energy Management System (EMS)
 - Protocol: BACnet, Lonworks the controller software language
 - Gain: % change in control signal/% change in control variable (ratio of change in output signal to change in input signal)
 - Chilled Water Reset

- Slowly increase chilled water temperature as load conditions fall (based on return air or outside air).
- Supply Air Reset
 - Slowly increase supply air temperature if return air conditions or outside air conditions are met.
- Variable Airflow
 - Pressure sensor in duct to vary fan speed as VAV boxes close
 - VAV Box types: single, dual, parallel fan powered, series fan powered
- Variable Chilled Water Flow
 - Variable Primary two way valve control, pressure sensor at the farthest coil to vary the pump flow.
 - Primary-Secondary Primary flow circulates to chillers at a constant rate, secondary flow circulates to air handlers at variable rate.
- Economizer *Use outside air instead of conditioning. Exhaust fan required.*
- Energy Recovery *various control schemes*
- Valves: Authority, Cv Rating, Cavitation
- Damper: Parallel vs Opposed, Authority

D. Supportive Knowledge (3-5)

- 1. Codes and standards
 - Know generally what is in these standards
 - ASHRAE 15: Safety Standard for Refrigeration Systems
 - Lists allowable refrigerant quantities per room volume and other safety considerations.
 - o Know the Safety Groups for each ref. (also listed in ASHRAE)

Higher Flammability	A3	В3
Lower Flammability	A2	B2
No Flame Propagation	A1	B1
	Less Toxic	More Toxic

- ASHRAE 34: Safety Class of Refrigerants
 - Lists refrigerant safety groups, concentration limits, other refrigerant info
- ASHRAE 55: Thermal Environment for Human Occupancy
 - Human comfort limits: draft, temperature, clothing
- ASHRAE 62.1: Ventilation for Indoor Air Quality
 - Ventilation/exhaust rates
- ASHRAE 62.2: Ventilation for Indoor Air Quality in Low Rise Residential
- ASHRAE 90.1: Energy Standard for Building, except Low Rise Residential
 - Zoning based on weather data, building envelope requirement, HVAC equipment efficiency, HVAC system requirements, lighting efficiency, duct/pipe insulation, energy saving controls (e.g. economizer, temperature reset, variable volume), energy calculation requirements, and other energy requirements.

- ASHRAE 90.2: Energy Standard for Low Rise Residential
- ASHRAE 189.1: Standard for High-Performance Green Building, except Low Rise Residential
 - More stringent requirements than ASHRAE 90.1
- NFPA 90A: Standard for Air Conditioning and Ventilation
- NFPA 90B: Standard for Warm Air Heating and Air Conditioning
- 2. Air quality and ventilation (e.g., filtration, dilution)
 - Filter MERV Rating
 - Adding fresh air for Dilution
 - Velocity of exhaust for Dilution
 - ASHRAE 62.1 ventilation rate
- 3. Vibration control (e.g., transmission effect, isolation)
 - Isolate Vibration from Equipment
 - Spring Isolation
 - Flexible Pipe
 - Base/Isolator Types, see "Selection Guide for Vibration Isolation" table in NCEES Handbook, Ch. 9
- 4. Acoustics (e.g., sound control, absorption, attenuators, noise-level criteria)
 - Noise Level at distance or for multiple sound sources
 - Sound attenuation by decibel
 - Different Sound Rating Methods: NC, dBA, RC
 - Noise Ratings by room type